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A Stable Adaptive Fuzzy Sliding-Mode Control
for Affine Nonlinear Systems with Application to

Four-Bar Linkage Systems
Chih-Lyang Hwang and Chia-Ying Kuo

Abstract—In this paper, a stable adaptive fuzzy sliding-mode
control for affine highly nonlinear systems is developed. First, the
external part of a transformed system via a feedback linearizing
control evolves a linear dynamic system with uncertainties. A ref-
erence model with the desired amplitude and phase properties is
given to obtain an error model. Because the uncertainties are as-
sumed to be large, a fuzzy model is employed to model these un-
certainties. A learning law with -modification for the weight of a
fuzzy model is considered to ensure the boundedness of learning
weight without the requirement of persistent excitation condition.
Then, an equivalent control using the known part of system dy-
namics and the learning fuzzy model is designed to achieve the de-
sired control behavior. Furthermore, the uncertainties caused by
the approximation of fuzzy model and the error of learning weight
are tackled by a switching control. Under some mild conditions,
the stability of the internal part of the transformed system is guar-
anteed. Finally, the stability of the overall system is verified by
the Lyapunov theory so that the ultimately bounded tracking is
accomplished. Simulations and experiments of velocity control of
four-bar-linkage system are also presented to verify the usefulness
of the proposed control.

Index Terms—Adaptive fuzzy control, four-bar-linkage system,
Lyapunov stability, sliding-mode control.

I. INTRODUCTION

FUZZY (or adaptive) control has widened its applicability
to many engineering fields, it is increasing the need of the-

oretic analysis, e.g., stability, robustness, and performance. It
is generally applicable to the systems that are mathematically
poorly modeled. However, the major disadvantages of fuzzy (or
adaptive) control are the lack of systematic design, without the
insurance of stability of closed-loop system in the presence of
uncertainties, and a poor performance due to the probable drift
of learning weight [1]–[9].

Although many papers discuss the stable adaptive fuzzy con-
trols [3], [5], [6], [9], they have made many assumptions. For
example, Wang [6] used a Lyapunov-based learning law to im-
prove a probable local minimum of error measure. Despite its
advantages, the control method in [6] has three substantial draw-
backs: i) The controller must adapt itself to every change of ref-
erence signal. ii) The method is limited to the system where the
Lie-derivative of system output is constant. iii) To ensure the
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convergence of weight, fuzzy basis function must be persistently
excited. Furthermore, Su and Stepanenko [3] have presented a
modified version of Sanner and Slotine [10]. It has assumed that
the Lie-derivative of system output is not only a constant, but
also is known in advance. They use a modulation function to
combine a robust control scheme outside of a compact set and
an adaptive scheme inside the compact set. Hence, the global
stability of overall system is guaranteed. However, the above
method has the following disadvantages: i) The scheme is too
complex to realize. ii) The possibility of discontinuous control
occurs. iii) The compact set for the proposed control is unclear.
The paper discussed by Spooner and Passsino [5] have investi-
gated stable indirect and direct adaptive fuzzy controller usinga
priori knowledge about thetimes derivative of system output.
That is, the times derivative of system output contains known
part and unknown part of system dynamics. However, its un-
certain term is too specially and the first derivatives of
system output must be available. In 1999, Fischle and Schroder
[9] present the solutions to the above problems. For instance, the
controller does not necessarily adapt itself to every change of
reference signal, the method is not limited to the system where
the Lie-derivative of system output is constant. However, they
must satisfy the following conditions: i) The relative degree
must be equal to the order of system. ii) The first deriva-
tives of system output must be available for the learning algo-
rithm. iii) For the convergence of weight, the fuzzy basic func-
tions must be persistently excited.

It is well known that sliding-mode control provides a robust
means for controlling a nonlinear dynamic system with uncer-
tainties [11]–[15]. It often results in a chattering control input
due to its discontinuous switching control used to deal with
the uncertainties. The larger uncertainties take place, the larger
switching control happens. In the current paper, the nonlinear
functions include known part (i.e., nominal system) and un-
known part (i.e., uncertainties). The known part is achieved by
deriving from the physical law, e.g., Lagrange’s dynamic prin-
ciple. Then, a coordinate transformation satisfying some con-
ditions is employed to achieve a transformed system, including
an external part with the order that equals the system relative
degree and an internal part [16], [17]. The external part of trans-
formed system via a feedback linearizing control becomes a
linear dynamic system with uncertainties. Then, a prescribed
reference model is designed to obtain an error model. A fuzzy
model is applied to model these large uncertainties. A learning
law with -modification for the weight of the fuzzy model is
used to ensure the boundedness of learning weight without the
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Fig. 1. Control block diagram.

requirement of persistent excitation condition [18]–[20]. Then,
an equivalent control using the known part of system dynamics
and the learning fuzzy-model is applied to achieve the desired
control behavior. Because the fuzzy model is not applied to the
whole nonlinear functions, the resolution of the fuzzy model
increases or a good description of system uncertainties is ac-
complished. Furthermore, the uncertainties caused by the ap-
proximation of the fuzzy model and the error of learning weight
are tackled by the switching control. The system performance
is much improved as compared with traditional fuzzy (or adap-
tive) control because the uncertainties are reduced by the pre-
vious equivalent control. The proposed control is then more ef-
fective to cope with the fuzzy control problem of nonlinear sys-
tems with large uncertainties. Under some mild conditions, the
stability of the internal part of transformed system is guaran-
teed. The stability of the overall system is then verified by the
Lyapunov theory so that the ultimately bounded tracking is ac-
complished. Simulations and experiments of velocity control of
four-bar-linkage system confirm the usefulness of the proposed
control.

II. PROBLEM FORMULATION

Consider the following affine nonlinear single-input–single-
output dynamic systems:

(1)

where denotes the system state, rep-
resents the system input, system output, is a known
constant vector. Furthermore, ,

are highly nonlinear functions, where and
denote the nominal part of system matrices, and

represent the unknown (or uncertain) part of system ma-
trices, and are bounded and smooth. Define the following Lie

derivatives of the scalar in the direction of the
vector fields and [16], [17]:

(2)

Then the derivative of output with respect to time, i.e.,
or , is described as follows:

(3)

If , then the system (1) has the relative degree one.
Similarly, the system (1) with the relative degree, is expressed
as follows:

(4a)

(4b)

It is assumed that:

A1: the system state is available;
A2: the nominal system has the relative degree, where

.
Definition 1 [17]: The solutions of a dynamic system are

said to be uniformly ultimately bound (UUB) if there exist pos-
itive constants and , and for every there is a posi-
tive constant , such that ,

.
The problem is to develop an indirect-adaptive fuzzy

sliding-mode control for a class of affine highly nonlinear
dynamic systems subject to huge uncertainties (see Fig. 1). A
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Fig. 2. Basic configuration of fuzzy logic system.

Fig. 3. Experimental setup. (a) Photograph. (b) Block diagram.

feedback linearizing control makes the external part of trans-
formed system with relative degreebecome a linear dynamic
system with uncertainties. Then a reference model is designed
to obtain a desired behavior including phase lag and amplitude
relation. A fuzzy model is applied to model these huge un-
certainties. A learning law with-modification for the weight
of a fuzzy model is constructed to ensure the boundedness of
learning weight without the requirement of persistent excitation
condition. Then, an equivalent control using the known part of
system dynamics and the learning fuzzy model is designed to
achieve the desired control behavior. Furthermore, a switching

control is given to deal with the uncertainties caused by the
approximation of the fuzzy model and the error of learning
weight. Finally, the simulations and experiments of velocity
control of four-bar-linkage system are presented to verify the
usefulness of the proposed control.

Remark 1: If and , where and
are constant matrices, then and are highly non-
linear. A feedback linearizing control is applied to the system
(1) such thatthe external part of transformed system becomes
a linear dynamic system with reduced uncertainties, and such
thata good nominal model for the controller design is achieved.
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Fig. 4. Comparison of sinusoidal responses between physical system(� � �) and mathematical model(—-) for system inputu(t) = u sin(2�ft). (a)u = 2:5,
f = 0:2. (b) u = 3:5, f = 0:5. (c) u = 4:5, f = 0:8.

Then the performance of proposed control can be better than that
of traditional sliding-mode control.

III. FUZZY LOGIC SYSTEM

An important contribution of fuzzy system theory is to pro-
vide a systematic procedure for transforming a set of linguistic
rules into a nonlinear mapping. The basic configuration of the
fuzzy logic system is shown in Fig. 2. The fuzzy logic system
performs a mapping from to . There are fuzzy con-
trol rules and the upper scriptdenotes theth rule from human
experts in the following form:

is and is

is (5)

where and
are the input and output of the fuzzy logic

system, respectively, and
are labels of sets in and , respectively. The fuzzy inference

engine performs a mapping from fuzzy sets in to fuzzy
sets in , based upon the fuzzyIF–THEN rules in the fuzzy
rule base and the compositional rule of inference. Letbe an
arbitrary fuzzy set in . The fuzzifier maps a crisp point
into a fuzzy set in . The defuzzifier maps a fuzzy set in
to a crisp point in . More information can be found in [21].

Let and be membership functions. The
fuzzy logic systems with center-average defuzzifier, product in-
ference and singleton fuzzifier are in the following form [1]–[3],
[5]–[9], [21], [22]:

(6)

where denotes center of theth fuzzy set
and is the point at which achieves its maximum value and

. Equation (6) can be rewritten as

(7)
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Fig. 5. The responses ofr = 6 andf = 0:5 with 2�a(x) and2�b(x). (a) _� (t)(� � �) and _�(t)(—-). (b)u(t). (c)s(t). (d)f(�)(� � �) andŴ (t)�(x)(—-).
(e) �(t)(—-). (f) i(t).
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where is a parameter vector, and
is a fuzzy basis function

defined as follows:

(8)

If the fuzzy systems can approximate any nonlinear contin-
uous functions to arbitrary accuracy, then they would be very
useful in a wide variety of applications. The fuzzy logic systems
in the form of (6) are proven in Wang [6] to be an universal ap-
proximator; i.e., for any given real continuous functionon the
compact set there exists a fuzzy logic system in the form of
(6) such that it can uniformly approximate overto arbitrary
accuracy. The universal approximation theory is stated as fol-
lows (e.g., [2], [6], [7], [21], [23]):

Theorem 1 (Universal Approximation Theorem):Suppose
that the input universe of discourseis a compact set in .
Then, for any given real continuous function on and
arbitrary , there exists a fuzzy system in the form
of (6) such that

There are two main reasons for using the fuzzy logic systems.
First, it was proven in [23] that the fuzzy logic systems in the
form of (6) are universal approximators. Second, the fuzzy logic
systems (6) are constructed from the fuzzyIF–THEN rules of (5)
using some specific fuzzification, fuzzy inference, and defuzzi-
fication strategies; therefore, linguistic information from human
experts [in the form of the fuzzyIF–THEN rules of (5)] can be di-
rectly incorporated into the controllers.

Remark 2: The more complex of nonlinear function is to be
approximated, the more number of rule is required for the spec-
ified accuracy (i.e., ). The minimum number of rule for odd
and symmetric distribution of input signal is , where de-
notes the number of input signal. The reason for using the odd
and symmetric distribution of input signal is that the input signal
often can be zero, and that the learning uncertainties are prob-
ably known in a compact set only. Based on the previous studies
(e.g., [5]–[10]), the Gaussian membership function is suitable
for many function approximations. The other types of member-
ship function have similar result.

IV. FEEDBACK LINEARIZING CONTROL

In this section, the feedback linearizing control for matched
and unmatched uncertainties are discussed. Before trans-
forming system (1) into another coordinate, the following
definition about diffeomorphism is given.

Definition 2 [16], [17]: Suppose are open subsets of
and is (i.e., is continuously differentiable

with respect to each of its arguments). Thenis a diffeomor-
phism of onto if: i) ; ii) is one-to-one; iii)

is also . is said to be a global diffeomor-
phism if and only if: i) is nonsingular for all ;
ii) is proper (i.e., ).

Fig. 6. The responses of typical weightŝw (t)(� � �), ŵ (t)(– – –), and
ŵ (t)(—-) for Fig. 5 case with the exception of high gain = 83 and
d = 85.

A. Matched Uncertainties

If the uncertainties satisfy the following matching condition:

and (9)

it is called “matched uncertainties.” The following lemma is
given to discuss a transformation for the system (1) into “tri-
angular” form.

Lemma 1: Consider the nonlinear system (1) with
the following global diffeomorphism

and the satisfaction of matching condition
(9). Then the following dynamic system is achieved:

(10a)

(10b)

where , , the functions
, , , are the func-

tions ,
, , evaluated at

, respectively. is the representation in
the transformed coordinate of .
The matrices , are described as follows:

... ... (11)

Proof: See Appendix A.
Equation (10) is said to be in the normal form [16], [17]. This

form decomposes the system into an external part and an
internal part . The external part is linearized by the (14),
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Fig. 7. The responses of Fig. 6 case with� = 0. (a) _� (t)(� � �)� _�(t)(—-). (b)u(t). (c) ŵ (t)(� � �), ŵ (t)(– – –), andŵ (t)(—-).

while the internal part is unobservable by the same control. For a
bounded smooth trajectory , the following reference model
is considered.

(12)

where constant is selected to obtain the desired re-
sponse, is chosen to accomplish the desired ampli-
tude relation between input and output, anddenotes the phase
lag of reference model. The state tracking error of system can
be written as follows:

(13)

where . The following linearizing feedback
control is designed for the system (13)

(14)

where is the stable adaptive fuzzy sliding-mode control
discussed in the next section. Then the external part of system
by using the linearizing feedback control (14) becomes the fol-
lowing linear error system with uncertainties:

(15)

In short, (10b) and (15) represent the stability of closed-loop
system. If the control asymptotically stabilizes the dy-
namics in (15) and the dynamics is input-to-state
stable in (10b), then the asymptotic tracking of the closed-loop
system is guaranteed. Setting in (10b) results in

(16)
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which is called the zero dynamics. For input-to-state stability
of (10b), the origin of (16) must be exponentially stable
and is Lipschitz in , i.e.,

, where
is a constant.

Furthermore, the following assumption about the uncertainty
of control gain is made.

A3: , , where
is a compact set.

If the uncertainties
are large, a robust control for the system (15) will

be poor (i.e., see [20] and Fig. 10). Based on the approximation
theory of Theorem 1, the following fact exists

(17a)

where

(17b)

(17c)

where is described in (25) and which
is a compact set [i.e.,

]. Furthermore, the dimension and upper bound of weight
are described as follows:

(18)

where denotes the Frobenius’ norm (i.e.,
tr tr ) and are known. The fact
that the dimension of , the upper bound of and the
fuzzy basis function is known, implies that the function

can represent a class of uncertainties .
Because the uncertainty is assumed to be completely
unknown, the value of must be guessed from low value to
high value. Fortunately, if the uncertainty is partially
known based on the system analysis, the suitable value of
can be attained. Furthermore, the fuzzy model is not applied
to the whole nonlinear system, the resolution of the fuzzy
model increases or a good description of system uncertainties
is accomplished.

B. Unmatched Uncertainties

If the matching condition (9) does not satisfy, the stability of
closed-loop system is discussed as follows. The uncertainties
are assumed to be the following form:

and

(19)

Fig. 8. The response_� (t)(� � �) and _�(t)(—-) of v = 6 andf = 0:5 for
matched uncertainties and unmatched uncertainties.

where and denote the uncertainties those do
not satisfy the matching condition. Then (10b) and (15) become

(20a)

(20b)

where the functions , are the func-
tions , evaluated at , respec-
tively.

Fortunately, many physical systems (e.g., four-bar-linkage
system, robot systems, frictional system) can be expressed as
an affine nonlinear system with constant nominal control ma-
trix gain, i.e., in (1) is a constant matrix. Under the cir-
cumstances, the unmatched uncertainty probably does not exist
if it is within the range space of , i.e., .
Under the circumstances, (20) becomes

(21a)

(21b)

where . For input-to-state
stability of (21a), the origin of the following system (22a) must
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Fig. 9. The responses of experiment without using fuzzy adaptive law (i.e., robust control). (a)v = 4, f = 0:2. (b) v = 6, f = 0:5. (c) v = 8, f = 0:8.

be exponentially stable and is Lips-
chitz in

(22a)

In addition, the approximation of uncertainties becomes

(22b)

As compared with (17c) and (22b), an extra term caused by the
unmatched uncertainties [i.e., ] is ap-
proximated by the fuzzy model. Similarly, an extra term caused
by the unmatched uncertainties [i.e., ] is added into
the (16). As compared with the case in Section IV-A, the margin
of input-to-state stability of internal system decreases.

V. STABLE ADAPTIVE FUZZY SLIDING-MODE CONTROL

First, a sliding surface is defined as follows:

(23)

where and
. The coefficients are chosen

such that the sliding surface is Hurwitz. Furthermore,
the following updating law for the weight is considered

(24)

where , , and denote the learning
rate and the-modification rate, respectively. Because the fuzzy
basis function in (8) is small as compared with the radical
basis function in neural-network control (e.g., [10], [20]), the
learning rate of (24) is chosen large enough to accomplish an ef-
fective learning of uncertainties. The selection of
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in (24) is the reason for the boundedness of learning weight ma-
trix without the requirement of persistent excitation [18]–[20].
In general, is small to allow a possibility of effective learning
of . Too large value of will force converge into the
neighborhood of zero. Under the circumstances, a poor learning
of occurs if is not small. The following theorem dis-
cusses the stable adaptive fuzzy sliding-mode control for the
system (21).

Theorem 2: Consider (21) and the following stable adaptive
fuzzy sliding-mode control:

(25)

where

(26)

(27)

The overall system satisfies the following conditions: i) a stable
sliding surface (23); ii) the assumptions A1–A3; iii) the satis-
faction of input-to-state stability; and iv) . Then

, , , , and are UUB, and the system per-
formance satisfying , where

(28)

Proof: See Appendix B.
Remark 3: The first term of the proposed control, i.e., ,

is to assign the desired linear dynamic behavior and to cancel the
effect of uncertainties by using the learning uncertainties. It is
much improved as compared to traditional fuzzy (or adaptive)
control because the uncertainties are attenuated by the equiva-
lent control. In addition, the uncertainties caused by the approx-
imation of the fuzzy model and the error of learning weight are
tackled by the switching control, i.e., . The proposed con-
trol is then more effective to cope with the fuzzy control prob-
lems of nonlinear system in the presence of large uncertainties.

VI. SIMULATIONS AND EXPERIMENTS

A. Simulations

The four-bar-linkage driven by a direct-driven motor through
a rigid coupling in horizontal plane is expressed as follows (e.g.,
[24]):

(29)

(30)

(31)

where the symbols , , and denote effec-
tive inertia, linear damping of motor and load, centrifugal and
Coriolis, respectively; the symbols , , , , ,
and represent motor inductance, resistance, back-emf
constant, current, angular position, and torque, respectively.
More details of the proposed four-bar-linkage systems can refer
to Appendix C. Rewrite the above four-bar-linkage system as
the form of (1) with the following definitions:

and

(32)

The system (29)–(32) has relative degree 2. The modeling check
is shown in Fig. 4. It indicates that the dynamics of mathe-
matical model captures the dominant dynamics of real four-bar
linkage system. Beside the parameters of mathematical model
in Appendix C, the other parameters are described as follows:

kgms/rad, kgm. In this paper, not
the signal or , but the uncertainty caused by
or , i.e., , is approximated by the fuzzy model. Sup-
pose the following coordinate transformation:

(33)

where denotes theth component of , , and
. The values of , are selected

because as ,
is exponentially stable. Furthermore, is nonsingular
for all . In short, the input-to-state stability is satisfied. One
cannot let , because is not
exponentially stable [16], [17].

The desired velocity is set as
rad/s, where , then

rad. The parame-
ters of reference model are chosen as , , and

. Hence, the refer-
ence input for (12) becomes . Ac-
cording to the explanation of Remark 1, three fuzzy sets

have the following Gaussian membership func-
tions:

where

and

where

and

where

and

where

and (34)
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The total number of fuzzy rule is . The control parameters
are assigned as follows:

and (35)

The matched uncertainties are supposed to be as follows:

(36a)

(36b)

Because , the unmatched uncertain-
ties have the following form:

(37a)

where

(37b)

(37c)

The responses for matched uncertainty (36) are shown in Fig. 5.
The tracking performance is excellent. The maximum steady-
state tracking error is 0.214 rad/s or 3.56% of amplitude of ref-
erence input. The responses of system states shown in Fig. 5(a),
(e), and (f) are smooth enough. Because the high-frequency un-
certainties occur, the control signal in Fig. 5(b) has high-fre-
quency components. Owing to the existence of uncertainties
and the feature of time-varying reference input, the response
of sliding surface in Fig. 5(c) is only in the neighborhood of
zero. The responses of real and learning uncertainties are quiet
matched in the sense of low-frequency dominant trend [refer to
Fig. 5(d)]. The proposed fuzzy logic system (6) and the updating
law for weight (24) demonstrate an effective tool for the learning
of uncertainties. Similarly, the responses for the reference inputs

, and , can be achieved. The
maximum steady-state tracking errors for , and

, are 0.044, 0.681 rad/s (or 1.09%, 8.51% of
amplitude of reference input), respectively. For brevity, those
are left out. In summary, the tracking error for the reference
input with small amplitude and low frequency is smallest; on
the contrary, the tracking error for the reference input with large
amplitude and high frequency is largest. To demonstrate the ef-
fectiveness of the updating law (24), the responses of typical
weights of Fig. 5 case with the exception of control parame-
ters: , (which is high gain) are shown in
Fig. 6. Its maximum steady-state tracking error is 3.32% that
is a little smaller than that of Fig. 5. The responses of typical
weight for updating law without-modification [i.e., in
(24)] are shown in Fig. 7. The response of weight in tradition
updating law (e.g., [2], [5], [9]) cannot guarantee its bounded-
ness. The drift of weight eventually makes the overall system

unstable (see Fig. 7). Its maximum steady-state tracking error
for the 70-s interval is 31.71%. As compared with Figs. 6 and
7, the proposed updating law (24) guarantees the boundedness
of weight. Similarly, the system with unmatched uncertainties
(37a)–(37c) and matched uncertainties (36), which still satisfies
the input-to-state stability, is considered. The corresponding re-
sponse is presented in Fig. 8. Its maximum steady-state tracking
error 0.324 rad/s is a little larger than that of Fig. 5 (i.e., 0.214
rad/s). It seems that the robustness of the proposed control is
excellent.

B. Experiments

1) Experiment Setup:The hardware of the four-bar-linkage
system mainly consists of five parts: a direct-driven motor,
a driver, a four-bar-linkage, an AD/DA card, and a personal
computer (refer to Fig. 3). The direct-driven motor and the
driver in this study are a Model No. DM1075B and a Model
No. SD1075B-2 from the Yokowaga Co. The specifications
of this direct-driven motor system are briefly introduced as
follows: rate speed 12.56 rad/s, maximum output torque 7.653
kgm, power consumption 1.6 KVA, and stiffness
rad/kgm. After sampling by the 12-b A/D card (PCL-1800), the
resolution of velocity and current is rad/s and

amp, respectively. The conversion factor of ve-
locity and current for voltage are 0.55 rad/s/V and
amp/V, respectively. The control cycle time of the current paper
is 0.007 s.

2) Experimental Results:The initial state and weight are the
same as Fig. 5. The control parameters for experiment are as-
signed as follows:

and (38)

To avoid the saturated input and the drift of weight, the con-
trol gains in experiment are smaller than those in simulation
[compare (34), (35), and (38)]. The responses of experiment
without using fuzzy adaptive law [i.e., the equivalent control
without the term , or call it as “robust control”] are
shown in Fig. 9. Then the responses of experiment using the
proposed control are shown in Figs. 10 and 11. The maximum
steady-state tracking errors for , , ,

and , are 0.79542, 0.32688, 1.5552
rad/s (or 13.257%, 8.172%, and 18.44% of amplitude of ref-
erence input), respectively. As compared with Figs. 5, 9, and
10, the following conclusions are drawn: i) The responses of
proposed control indeed better than those of “robust control.”
It reveals that the learning uncertainties can be used to cancel
the real uncertainties and then the system performances are im-
proved. ii) The maximum tracking error for experiment is larger
than that of corresponding simulation. The main reasons are
that the dynamics of physical system is more complex than
the dynamics of mathematical model (see Fig. 3) and that a
smaller control gain for the experiment is used to prevent prac-
tical instability (e.g., saturated input, drift of weight). iii) For
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Fig. 10. The responses of experiment forv = 6 andf = 0:5. (a) _� (t)(� � �) and _�(t)(—-). (b)u(t). (c) s(t). (d) �(t)(—-). (e) i(t).

improving the system performance, the more accurate mathe-
matical model (e.g., the flexible coupling of linkage, friction

phenomenon of joint) must be considered (or derived). Then a
higher control gain can be used to achieve an excellent perfor-
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Fig. 11. The responses_� (t)(� � �) and _�(t)(—-) of experiments. (a)v = 4 andf = 0:2. (b) v = 8 andf = 0:8.

mance. iv) Without the requirement of persistent excitation con-
dition, the updating law (24) ensures the boundedness of weight.
Then the stability of closed loop is assured.

VII. CONCLUSION

In the beginning, a feedback-linearizing control with a de-
sired reference model makes the external part of transformed
system become a linear-error dynamic system with uncertain-
ties. Without the requirement of persistent excitation condition,
a fuzzy model with an -modification weight updating law is
employed to on-line model these uncertainties. Then, an equiv-
alent control using the known part of system dynamics and the
learning fuzzy model is applied to achieve the desired control
behavior. Since the fuzzy model is not applied to the whole
nonlinear system, the resolution of the fuzzy model increases
or a good description of system uncertainties is accomplished.
Because the uncertainties are reduced by the equivalent control
and because the uncertainties caused by the approximation of
fuzzy-model and the error of learning weight are tackled by the
switching control, the system performance is much improved
as compared with traditional (adaptive) fuzzy controls. Under
mild conditions, the stability of the internal part of transformed
system is guaranteed. Simulations and experiments of velocity
control of four-bar-linkage system confirm the usefulness of the
proposed control. The authors believe that the proposed scheme
can be applied to many control problems.

APPENDIX A
THE PROOF OFLEMMA 1

In the sequence, the arguments of variables are omitted if
there are not vague. With the matching condition (9), the non-
linear system (1) becomes

(A1)

The derivative of the transformation

is described as follows:

(A2)

and

(A3)

Rewrite (A2) as the following form:

(A4)

where the pair is described in (11) and is controllable,
is expressed in (10) and nonsingular for all .

The function that transforms (A2) into the form (A4) must
satisfy the following partial differential equations:

(A5)

or

(A6)

Then can be found. To transform the system into
the normal form, a function is chosen such that
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and . Then can be found and (A3)
is simplified into the following equation:

(A7)

Finally, (10) is achieved. Q.E.D.

APPENDIX B
THE PROOF OFTHEOREM 2

First, the matched uncertainties are considered. Define a Lya-
punov function candidate for the closed-loop system as follows:

as (B1)

where

and

The derivative is given

(B2)

Similarly, the derivative of using (15) and (17) is given as
follows:

(B3)

Substituting (24), (26), (27), and (B3) into (B2) yields

(B4)

where

(B5)

(B6)

Because , is achieved. Hence, if

then

where

Similarly, if

then

where

Hence, if

and

then

(B7)

Hence, outside of the following domainmakes (B7) exist.

(B8)

Finally, from (25)–(27), is UUB. Because the dynamics (10b)
is input-to-state stable, , , or is UUB. From Lemma 1,
and are also UUB. Then is UUB.

Similarly, the system with unmatched uncertainties can be
achieved. For simplicity, those are omitted. Q.E.D.

APPENDIX C
THE PARAMETER VALUES OFFOUR-BAR-LINKAGE SYSTEM

(C1)

(C2)

(C3)

(C4)

(C5)

(C6)

(C7)

(C8)

(C9)

Furthermore, four-bar-linkage has the following length, mass
and inertia: m, m, m,
m, kg, kg, kg,
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kgm, kgm, and
kgm. Because the first linkage is fixed, the in-

formation of and are not required. The torque constant
is kgm/amp achieved from the maximum torque and
the maximum current. The following system parameters are also
assigned V/rad/s, , H.
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